Forschungsprojekte

Strukturen

  • Entwicklung eines Sicherheitscockpits für Segelflugzeuge (CraCpit)
    Im Gesamtverbund entwickeln die Partner Lösungen für ein Sicherheitscockpit von Segelflugzeugen. Dabei konzentrieren sich der LCC und die Akaflieg München an der TU München auf die Neuentwicklung einer Cockpitstruktur, das ISD und die Akaflieg Hannover an der Leibniz Universität Hannover (LUH) adressieren eine Nachrüstlösung für bestehende Flugzeugmuster. Ziel der Partner an der LUH ist die Auslegung sowie der zulassungsfähige Entwurf von nachrüstbaren Strukturelementen zur Herstellung eines Sicherheitscockpits in älteren, bestehenden Segelflugzeugmustern nach aktuellen Anforderungen. Cockpitstrukturen erfahren im Crashfall hohe Beanspruchungen, die lokal zu Verformungen mit großen Deformationen und Werkstoffversagen führen. Die nachgerüsteten Strukturkomponenten übernehmen hierbei unterschiedliche (gegensätzliche) Funktionen, wie die Sicherstellung des Überlebensraumes des Piloten oder die Energiedissipation zur Minderung der Aufprallwirkung. Die Wirksamkeit der Einzelkomponenten kann anhand von FEM-Simulationen beurteilt und optimiert werden. Hierzu sind entsprechende Materialformulierungen erforderlich, welche in der Lage sind, die Strukturantwort vom Belastungsbeginn bis weit in den Nachbruchbereich hinein physikalisch hinreichend korrekt abzubilden. In der Materialmodellierung, der Simulation und der Bewertung der Bauteilfunktion der Nachrüstelemente liegt der Schwerpunkt der Arbeiten am ISD. Die Validierung der Materialmodelle geschieht durch Versuche auf Subkomponentenebene. Nach der Optimierung der Baueile durch die Simulation schließt ein Versuch auf Strukturebene (Simulation des gesamten Rumpfes und Crashversuch eines Beispielrumpfes (Prototyp)) das Projekt ab. Die experimentellen Arbeiten werden in enger Kooperation mit dem Partner Akaflieg Hannover e.V. durchgeführt. Hierzu werden diverse Prüfkörper und Prototypen gebaut und getestet. Darüberhinaus wird ein Industriepartner zur Sicherstellung der wirtschaftlichen Verwertung eingebunden.
    Leitung: Prof. Dr-Ing habil. Raimund Rolfes
    Team: M.Sc. Christian Rolffs, Dr.-Ing. Sven Scheffler
    Jahr: 2017
    Förderung: Bundesministerium für Wirtschaft und Energie – 20E1703D
    Laufzeit: 2018-2021
  • FANFOLD – Schnelle maschinell angelernte nichtlineare Rotorblattanalyse
    Die Performance und Zuverlässigkeit des Rotorblattes ist entscheidend für die Effizienz einer WEA. Die Blätter machen einen Großteil der Anlagenkosten aus – Ihre Reparatur- und Wartungskosten sind vergleichsweise hoch. Rotorblätter müssen weniger störanfällig und reparaturbedürftig werden. In diese Richtung, Reparatur- und Wartungsaufwand zu senken, weisen auch Konzepte der vorausschauenden Wartung („predictive maintenance“) und des Digitalen Zwillings, die in der Zukunft voraussichtlich einen signifikanten Teil der Gewinne im Rotorblattmarkt verantworten werden. Voraussetzung zur Umsetzung o.g. Konzepte ist eine schnelle Analysemethode für Faserverbundstrukturen (Vorhersage und Bewertung von Schadensprogression und Lebensdauer). Für die Gesamtsimulation des Rotorblattes dienen heute hierzu FE-Analysen unter Verwendung linear-elastischer Materialmodelle. Nichtlineare Effekte durch Schäden oder gar eine kontinuierliche Schadensevolution müssen in kleinerem Maßstab durch Experimente oder Detailsimulationen aufwändig untersucht werden. Um einen Schritt weiter zu gehen und z.B. den Einfluss nichtlinearer, progressiver Schädigungsprozesse auf die Aeroelastik und Lebensdauer zu erfassen oder oder um der quasistatischen Simulation im Entwurf weniger konservative Abminderungsfaktoren zugrunde legen zu können, müsste die Gesamtsimulation am Rotorblatt direkt unter Berücksichtigung progressiver Schädigungsprozesse erfolgen (Lastumlagerungseffekte). Hindernisse sind bislang der zu hohe Berechnungsaufwand und die kostspielige experimentelle Charakterisierung existierender Materialmodelle. Zwei Themenschwerpunkte sind zu adressieren, um diesen Herausforderungen zu begegnen: 1. Entwicklung einer neuartigen, nichtlinearen und schnellen Struktursimulation auf Blattebene 2. Senkung des Materialcharakterisierungsaufwandes durch maschinelles Lernen Zeil dieses Teilprojektes ist die unter Punkt eins genannte, valide, effiziente und kostengünstige nichtlineare Rotorblattsimulation.
    Leitung: Prof. Dr-Ing. habil. Raimund Rolfes
    Team: M.Sc. Christian Rolffs, Dr.-Ing. Sven Scheffler
    Jahr: 2020
    Förderung: Bundesministerium für Wirtschaft und Energie – FKZ 03EE3028A
    Laufzeit: 2020 –2023